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a b s t r a c t

In this work we study reactive flows through porous media. We suppose dominant P�eclet’s number,

dominant Damköhler’s number and general linear reactions at the pore boundaries. Our goal is to obtain

the dispersion tensor and the upscaled model. We introduce the multiple scale expansions with drift for

the problem and use this technique to upscale the reactive flow equations. Our result is illustrated with

numerical simulations for the dispersion tensor.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Our understanding of porous media flows comes from the
knowledge of basic physical principles at the pore level and from
observations at the macroscale. Solving multiphase multicompo-
nent Navier–Stokes equations at the level of pores (the fine scale)
requires gathering of tremendous amount of fine scale data.
Consequently, the present computational resources are not able to
handle such flows. Furthermore, it is almost impossible to obtain a
complete description of the geometry and of the ongoing chemical
process.

To circumvent this difficulty a usual approach is to describe the
essential physical behavior in an averaged sense. This corresponds
to upscaling from the microscale to the macroscale, where we do
not have to consider all finer scale details.

There are different approaches to the upscaling of flows
through porous media. Early references involve the method of

moments (Aris, Brenner), more recent papers use either volume
averaging or multiple scale expansions. The multiple scale
expansions have the advantage of making the results mathema-
tically rigorous by means of the homogenization method.

The simplest flow type in porous media is single phase single
component flow. Here upscaling of the Navier–Stokes equations
gives Darcy’s law. The multiple scale expansion was constructed
by Ene and Sanchez-Palencia and the approximation was justified
by Tartar using the homogenization method. For a review of the
classic results on derivation of Darcy’s law, with detailed
references, we refer to Allaire (1997).

Next important question linked with the saturated flow
through porous media is the upscaling of tracer dispersion. The
transverse diffusion causes the particle cloud, which is trans-
ported by the flow, to undergo a transition from the pore level
convection–diffusion to a convection–dispersion phenomenon at
the macroscale. The observed spreading is called hydrodynamic
dispersion. Its effects are closely linked with the size of the P�eclet
number and for diffusive transport through porous media we are
typically in Taylor dispersion-mediated mixing, which means that
we have a dominant P�eclet number smaller than a threshold
value. When P�eclet’s number reaches that threshold value, then
diffusive transport changes its behavior to turbulent mixing.

The theoretical study of the dispersion goes back to the
pioneering paper of Taylor (1953), where an explicit expression for
effective dispersion in cylindrical capillaries was found. It led to
thousands of articles on dispersion in capillaries. It is interesting
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to note that recent mathematical analysis from Mikelić et al.
(2006) and Choquet and Mikelić (2008) showed that Taylor’s
dispersion theory is valid for all P�eclet’s numbers smaller than the
threshold value, corresponding to the characteristic small scale
diffusion and the characteristic global advection times of same
order. This was advocated through numerous numerical experi-
ments in van Duijn et al. (2008), where P�eclet’s numbers
corresponding to Taylor’s (1953) experiments were determined
and found to be close to the threshold value.

For study of dispersion in porous media using an averaging
technique, we refer to Carbonell and Whitaker (1983) and
Quintard and Whitaker (1993). The upscaled system is obtained
by making the ad hoc closure hypothesis that the perturbation of
the upscaled concentration is proportional to its gradient.

Study of the dispersion in porous media via analysis by
multiple scale expansions was undertaken in a number of papers.
Papers Rubinstein and Mauri (1986) and Mei (1992) focused at the
important case when P�eclet number is of order e�1, where e is the
characteristic pore size. In Auriault and Adler (1995) dispersion
was studied for various magnitudes of P�eclet’s numbers. The
systematic study of the dispersion tensor is in Salles et al. (1993)
and Amaziane et al. (2006).

Presence of the chemical reactions complicates the situation
further. Already for reactive flows through capillaries the
literature is reduced to several recent papers (see van Duijn et al.,
2008 for references). We mention modeling dispersion for a flow
in a biporous media with adsorption in the micropores, in Canon
et al. (1999) using multiple scale expansions technique from
Auriault and Lewandowska (1993). Multiple scale expansion for
reactive flows with dominant P�eclet’s number and with infinite
rate constant for adsorption is in Lewandowska et al. (2002). The
case of infinite linear adsorption constant is considered in Mauri
(1991).

In most situations it turned out that the multiple scale
expansions could be done rigorously using a particular homo-
genization tool called the two-scale convergence. It was
introduced by Nguentseng and Allaire and we refer to Allaire
(1992) for a complete theory with applications and references.
It was generalized to cover also presence of surface terms in
Allaire et al. (1995) and Neuss-Radu (1996). The two-scale
convergence not only justifies using multiple scales expansions
but also for very complex structures is simpler than expansions,
because it necessitates less computations. An example is
obtaining Biot’s equations from poroelasticity (for review see
Mikelić, 2002). With such motivation, Piatnitski et al intro-
duced in Donato and Piatnitski (2005) and Marušić-Paloka and
Piatnitski (2005) the two-scale convergence with drift. See also
Allaire (2008) for a detailed theory. Then it was applied with
success in Allaire and Raphael (2007) to reactive flows with
volume reactions and infinite linear adsorption constant at pore
boundaries.

In this paper we present for the first time in the engineering
literature the multiple scale expansion with drift applied to reactive
flows through porous media with dominant P�eclet’s and
Damköhler’s numbers and general linear surface reactions. It
was anticipated in Papanicolaou (1995, pp. 212–216) and is closely
linked with theoretical notion of the two-scale convergence with

drift. The question of the rigorous mathematical justification of
the upscaling is addressed in the preprint Allaire et al. In this
article we present the model, apply the multiple scale expansion
with drift to it and obtain formally the upscaled model. Then it is
illustrated with numerical simulations for the dispersion matrix.
We note that in Auriault and Adler (1995) and Salles et al. (1993) it
was necessary to use two time scales in order to get the correct
result. Here we will see that the approach is more elegant and
calculations shorter.

2. Examples of reactive flows

We consider reactive transport of solute particles transported
by a stationary incompressible viscous flow through a porous
medium. The flow regime is assumed to be laminar through the
fluid part Of of this porous medium, which is supposed to be a
network of interconnected channels. The flow satisfies a slip
(non-penetrating) condition on the fluid/solid interfaces and Of is
saturated by the fluid. Solute particles are participants in a
chemical reaction with the solid boundaries of the pores.

2.1. Model for reactive transport of a single solute

This is the simplest example and it is described by the
following model for the solute concentration c� and for the
surface concentration ĉ

�
:

@c�

@t�
þv�ðx�; t�Þ � rx�c

� � D�r2
x�c
� ¼ 0 inOf ; ð1Þ

where v� is the given fluid velocity (obtained, e.g. by solving the
Navier–Stokes equations), and D� the molecular diffusion (a posi-
tive constant). At the solid-fluid boundary @Of takes place an
assumed linear adsorption process, described by the following
equations:

�D�rx�c
� � n ¼ @

ĉ�

@t�
¼ k̂

�

c� �
ĉ
�

K�

� �
on @Of ; ð2Þ

where k̂
�

represents the rate constant for adsorption, K� the linear
adsorption equilibrium constant and n is the unit normal at @Of

oriented outwards with respect to Of .

2.2. Model for the binary ion exchange

We now consider another, more complex model, namely ion
exchange with two species. The binding on the pore surfaces is
due to electric charges carried by the solutes and the exchange
complex. For a detailed mathematical modeling and references
from the chemical engineering we refer to van Duijn and Knabner
(1992). Let us just briefly recall the equations.

For i¼ 1;2, let Mi denote the ion i in solution, let Mi denote
the ion i attached to the exchange complex and let ni denote the
valence of ion i. In order to maintain electroneutrality the
exchange reaction has the form

n2M1þn1M2$n1M2þn2M1:

The reaction rate from left to the right will be denoted by ~k1, and
from right to left by ~k2. In models for the binary ion exchange
differences in molecular diffusivities are neglected. Hence in Of

we have Eq. (1) for both concentrations c�i , i¼ 1;2. At the solid/
fluid boundaries @Of \@O we suppose the following rate descrip-
tion for the adsorption reaction:

@s�i
@t�
¼ Fiðc

�
1; s
�
1; c
�
2; s
�
2Þ; i¼ 1;2; ð3Þ

where F1 and F2 are given by F1 ¼ n2ð
~k1 �

~k2Þ, F2 ¼ n1ð
~k2 �

~k1Þ and
c�i and s�i denote the concentrations of Mi and Mi, respectively.
Valences ni, i¼ 1;2 are supposed to be bigger than or equal to 1.

In the engineering literature it is observed that the ion
exchange capacity s� ¼ n1s�1þn2s�2 is conserved. Following van
Duijn and Knabner (1992) and Knabner et al. (1995), we find out
that fc�; s�g, with c� ¼ n1c�1þn2c�2, satisfies the equations

@c�

@t�
þ v�ðx�; t�Þrx�c

�
� D�r2

x�c
�
¼ 0 in Of � ð0; TÞ; ð4Þ

�D�rx�c
�
� n¼

@s

@t�
¼ 0 on @Of \@O: ð5Þ
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Hence s� ¼ n1s�1jt ¼ 0þn2s�2jt ¼ 0. Next we observe that

s�2 ¼
1

n2
ðs� � n1s�1Þ; c�2 ¼

1

n2
ðc� � n1c�1Þ ð6Þ

and it is enough to study the corresponding problem for fc�1; s
�
1g.

We note that system (4) and (5) does not contain chemical
reactions. Hence fc�; s�g are calculated independently and then we
turn to the determination of c�i and s�i , i¼ 1;2.

Following van Duijn and Knabner (1992) the reaction rates
appearing in (3) are

~k1 ¼ k1ðc
�
1Þ

n2
s�

n1
� s�1

� �n1

and

~k2 ¼ k2ðs
�
1Þ

n2
c�

n1
� c�1

� �n1

;

8>>><
>>>:

ð7Þ

with k1 ¼ k̂1gn2

1 dn1

2 ðn1=n2Þ
n1 and k2 ¼ k̂2gn1

2 dn2

1 ðn1=n2Þ
n1 being posi-

tive constants. More general rate functions, corresponding to
other chemical settings, are introduced similarly (see van Duijn
and Knabner, 1992). The isotherms (i.e. singular points) corre-
sponding to the ordinary differential equation (ODE)

@s�1
@t�
¼ n2ð

~k1 �
~k2Þ

¼ n2 k1ðc
�
1Þ

n2
s�

n1
� s�1

� �n1

� k2ðs
�
1Þ

n2
c�

n1
� c�1

� �n1
� �

ð8Þ

are studied in van Duijn and Knabner (1992) where it was
established that (8) defines a monotone isotherm.

In order to get isotherms we suppose that c� does not depend
on time and that initially it was a constant. Then c�ðx�; t�Þ ¼

C�0 ¼ constant40. For s� we suppose s� ¼ s�0 ¼ constant40.
Let fceq

1 ; s
eq
1 g be such isotherm. Then

1

n2

@F1

@c�1
ðceq

1 ; s
eq
1 Þ ¼ n2k1ðc

eq
1 Þ

n2�1 s�

n1
� seq

1

� �n1

þk2n1ðs
eq
1 Þ

n2
c�

n1
� ceq

1

� �n1�1

¼
F1c

n2
40; ð9Þ

1

n2

@F1

@s�1
ðceq

1 ; s
eq
1 Þ ¼ � n1k1ðc

eq
1 Þ

n2
s�

n1
� seq

1

� �n1�1

�k2n2ðs
eq
1 Þ

n2�1 c�

n1
� ceq

1

� �n1

¼ �
F1s

n2
o0 ð10Þ

and the linearized rate function reads

@s�1
@t�
¼ F1cc�1 � F1ss

�
1 ¼ F1c c�1 �

s�1
F1c

F1s

0
BB@

1
CCA¼ � D�rx�c

�
1 � n: ð11Þ

2.3. Reactive flow systems with m species

We investigate again another model of ion exchange reactions,
or more general adsorption reactions, between an aqueous
solution involving mono and multivalent cations and NG different
exchange sites. It is based on the following set of simultaneous
chemical reactions:

njMiþniMjðEaÞnj
$niMjþnjMiðEaÞni

; ða¼ 1; . . . ;NGÞ; i; j¼ 1; . . . ;m;

where Mi designates the i th cation with valence ni and Ea signifies
an exchange site of type a with unit charge.

We are interested in the pore level modeling of the reactive
flows of m solutes. The general mathematical reference is the book
(Giovangigli, 1999). Chemistry is presented there through non-
linear source terms and the approach is very general. In this paper
we would like to apply our approach to particular reactive flows
with adsorption at the pore boundaries. A mathematically

oriented reference with detailed modeling is the book (Rhee
et al., 2001). In fact they present models with the surface terms
already scaled up to volume ones. Also the molecular diffusion is
neglected. Nevertheless, the adsorption modeling is given in
details.

We start by recalling the basic quantitative description of the
adsorption mechanism. If there is a finite rate of transfer from
solution to adsorbent, then one assumes that this rate depends on
the pertinent parameters of the problem. Frequently, it is assumed
that the rate of transfer of solute is determined by the rate of
transfer of mass through the stagnant film about the particle,
other processes occurring at equilibrium. Let s�i be the concentra-
tion of the i th solute on the solid in moles per unit surface. Then
we have

@s�i
@t�
¼ kðc�i � c��i Þ; ð12Þ

where k is the rate velocity and c��i the concentration in the fluid if
it was in equilibrium with the adsorbed phase. c��i are given
nonlinear functions of s�i , corresponding to the isotherms.

If a local equilibrium was established everywhere at any time,
then the surface concentrations s�i would be related to the volume
concentrations c�i by

s�i ¼ fiðc
�
1; . . . ; c

�
mÞ; i¼ 1; . . . ;m: ð13Þ

Typical example is the Langmuir adsorption isotherm

fiða1; . . . ; amÞ ¼
NiKiai

1þ
Pm

j ¼ 1 Kjaj

; i¼ 1; . . . ;m; ð14Þ

where Ki ¼ k1i=k2i is the ratio of the rate velocities (of adsorption
and desorption) and Ni is the limiting value of s�i (the maximum
number of moles of solute i that can be adsorbed per unit of
adsorbent).

Nonlinear mappings fi define a diffeomorphism on a subset of
Rm and we have

c��i ¼
s�i

KiNi

1

1�
Pm

j ¼ 1 s�j =Nj

; i¼ 1; . . . ;m: ð15Þ

Properties of the Jacobian matrix ½@fi=@c�j � are discussed in Rhee
et al. (2001, Vol. 2, Chapter 3), in the context of the study of the
generalized Riemann invariants. It is proved that the matrix
½@fi=@c�j � has m real distinct eigenvalues. It is important to note that
this matrix is neither symmetric nor normal and it is diagonalized
only by a similarity transform, which is not orthogonal.

We are interested in a linearized problem. We suppose that
there is a constant equilibrium state ðc1e; . . . ; cmeÞ; sie ¼ fiðc1e; . . . ;

cmeÞ. This is a positive steady solution for the ODE on the surface.
Then we study the perturbation of that solution

c1eþc�1; . . . ; cmeþc�m; s1eþs�1; . . . ; smeþs�m:

Then, using that cie � c��i ðs1e; . . . ; smeÞ ¼ 0, we have

cieþc�i � c��i ðs1eþs�1; . . . ; smeþs�mÞ

¼ c�i �
Xm

j ¼ 1

@c��i
@s�j

" #������
s� ¼ se

s�j þOðjs�j2Þ: ð16Þ

Hence the linearized law (12) reads

@s�i
@t�
¼ k c�i �

Xm
j ¼ 1

Fijs
�
j

0
@

1
A¼ � D�rc�i � n; i¼ 1; . . . ;m; ð17Þ
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where

Fij ¼

cie

Nj
1þ

Xm

j ¼ 1

Kjcje

0
@

1
A; ja i;

1

Ni

1

Ki
þcie

� �
1þ

Xm

j ¼ 1

Kjcje

0
@

1
A; j¼ i:

8>>>>>>><
>>>>>>>:

ð18Þ

Since the application defining Langmuir isotherm is bijective,
we know that F is invertible. Nevertheless, F is not symmetric.
Following Rhee et al. (2001, Vol. 2, Chapter 3) we know that F has
m distinct and real eigenvalues and there is a regular matrix S

such that

SFS�1
¼L¼ diagðl1; . . . ; lmÞ:

Our microscopic system for c� ¼ diagðc�1; . . . ; c
�
mÞ and s� ¼

diagðs�1; . . . ; s
�
mÞ is

@c�

@t�
þðv� � rx� Þc

� ¼D�r2
x�c
� inOf ; ð19Þ

c�ðx�;0Þ ¼ c�0ðx
�Þ; x�AOf ; ð20Þ

�D�rx�c
� � n¼

@s�

@t�
¼ k�ðc� � Fs�Þ on @Of \@O; ð21Þ

s�ðx�;0Þ ¼ s�0ðx
�Þ; x�A@Of : ð22Þ

Now we apply the similarity transform S to the problem (19)–(22)
and obtain the following system for fSc�; Ss�g:

@Sc�

@t�
þðv� � rx� ÞðSc�Þ ¼D�r2

x� ðSc�Þ inOf ; ð23Þ

Sc�ðx�;0Þ ¼ Sc�0ðx
�Þ; x�AOf ; ð24Þ

�D�rx� ðSc�Þ � n¼
@Ss�

@t�
¼ k�ðSc� �LSs�Þ on @Of \@O; ð25Þ

Ss�ðx�;0Þ ¼ Ss�0ðx
�Þ; x�A@Of : ð26Þ

Again we are back to the homogenization problem (29)–(32), but
this time for every component of Sc�.

3. Dimensionless equations and the assumptions on the data

The main conclusion of the previous section is that after
linearization we are back to system (1) and (2) and that it should
be the starting point for the upscaling procedure.

To make an asymptotic analysis of the problem we must first
introduce appropriate scales deduced from characteristic para-
meters. We denote them by a R-index (meaning ‘‘reference’’). The
characteristic length LR coincides in fact with the ‘‘observation
distance’’. We assume that the typical heterogeneities in Of have a
characteristic size ‘5LR. We set e¼ ð‘=LRÞ51 and the rescaled
flow domain is now Oe ¼Of =LR, with notation reminding us that it
contains pores of characteristic non-dimensional size e. Setting

uf ¼
c�

cR
; x¼

x�

LR
; t¼

t�

TR
; vðx; tÞ ¼

1

VR
v�ðx�; t�Þ;

vs ¼ ĉ
�
=ĉR, we obtain the dimensionless equations

@uf

@t
þ

VRTR

LR
vðx; tÞ � rxuf �

D�TR

L2
R

r2
x uf ¼ 0 inOe ð27Þ

and

�
D�

LR
cRrxuf � n¼

ĉR

TR

@vs

@t
¼ k̂

�

cRuf �
ĉRvs

K�

� �
on @Oe: ð28Þ

This problem involves the following time scales:

TL ¼ characteristic global advection time¼ LR=VR;
TD ¼ characteristic global diffusion time¼ L2

R=D�;
TDE ¼ K�=k̂

�

(characteristic desorption time);
TA ¼ ĉR=cRk̂

�

(characteristic adsorption time);
Treact ¼ superficial chemical reaction time¼ LR=k̂

�

;

and the following characteristic non-dimensional numbers

Pe¼
LRVR

D�
¼

TD

TL
¼

Peloc

e
ðPéclet’s numberÞ;

Da¼
LRk̂
�

D�
¼

TD

Treact
¼

Daloc

e ðDamköhler’s numberÞ:

We choose to study a regime for which TR ¼ TD, i.e. we are
interested at dispersion at global diffusion time.

Let us be a little more precise on the definition of Oe. From now
on we assume that Oe is an e-periodic open subset of Rn;n¼ 2;3.
The unit periodicity cell is Y ¼ ð0;1Þn on which we consider a
smooth partition S0

[ Y0 where S0 is the solid part and Y0 is the
fluid part (its periodic extension is a smooth connected open
subset) (see Fig. 1). By periodic translations we obtain Yj

e ¼

eðY0þ jÞ, Sj
e ¼ eðS

0
þ jÞ, Sj

e ¼ eð@S0
þ jÞ, Oe ¼

S
jAZn Yj

e and Se ¼ @Oe.
Oe is supposed to be connected and its boundary Se smooth.

The equations for ue ¼ uf and ve ¼ vs in their non-dimensional
form read (with the velocity ve ¼ v)

@ue
@t
þPe veðx; tÞ � rxue ¼r

2
x ue in Oe � ð0; TÞ; ð29Þ

ueðx;0Þ ¼ u0ðxÞ; xAOe; ð30Þ

�rxue � n¼
TA

Treact

@ve
@t
¼

TD

Treact
ue �

TA

TDE
ve

� �
on @Oe � ð0; TÞ; ð31Þ

veðx;0Þ ¼ v0ðxÞ; xA@Oe: ð32Þ

In the present work we make the following two hypotheses.

Fig. 1. The unit pore Y with the solid part S0 (dark grey) and the remaining fluid

part Y0 ¼ Y\S0.
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Hypothesis 1.

Pe�
1

e ; Da�
1

e ;
TA

Treact
¼ erAr � e;

TA

TDE
¼ rAD � 1: ð33Þ

This hypothesis means that we choose to study the case with
dominant P�eclet and Damköhler numbers, with comparable
characteristic adsorption and desorption times and longer reac-
tion time. In particular it implies

rAr � 1; VR � k̂
�

; D� � ‘VR; ĉR � ‘cR and K� � ‘:

Hypothesis 2. The velocity field is periodic, i.e.

veðx; tÞ ¼ b
x

e

� �
;

with a periodic divergence-free vector field bðyÞ satisfying

max
yAY

0
jbðyÞjrC; ry � bðyÞ ¼ 0 in Y0; bðyÞ � nðyÞ ¼ 0 on @S0:

Notice that the velocity could come from any type of incompres-
sible flow.

The initial data are chosen such that u0ðxÞAL2ðRn
Þ (i.e.R

Rn ju0ðxÞj2 dxoþ1) and v0AH1ðRn
Þ (i.e.

R
Rn ðju0ðxÞj2þjru0ðxÞj2Þ

dxoþ1). Taking into account (33), we rewrite problem
(29)–(32) as follows:

@tueþ
Peloc

e
b

x

e

� �
� rue �r

2ue ¼ 0 in Oe � ð0; TÞ; ð34Þ

�
@ue
@n
¼ rAr@tve ¼

Daloc

e
ðue � verADÞ on @Oe � ð0; TÞ; ð35Þ

ueðx;0Þ ¼ u0ðxÞ; veðx;0Þ ¼ v0ðxÞ; ð36Þ

with

rAr ¼ e
ĉR

‘cR
;

where we recall that Peloc , Daloc and ĉR=‘cR are of order 1 with
respect to e.

Remark 1. If the velocity field bðyÞ is not divergence-free and/or
does not satisfy the no-penetration condition bðyÞ � nðyÞ ¼ 0 on
@S0, it is still possible to homogenize (34)–(36) by using first a
factorization principle in the spirit of Allaire and Raphael (2007).

4. Two-scale multiple expansion with drift

We now introduce the method of two-scale asymptotic expan-

sions with drift (see Papanicolaou, 1995; Donato and Piatnitski,
2005; Marušić-Paloka and Piatnitski, 2005). More precisely, one
assumes that

ueðt; xÞ ¼
Xþ1
i ¼ 0

eiui t; x�
b�

e t;
x

e

� �
;

with uiðt; x; yÞ a function of the macroscopic variable x and of the
periodic microscopic variable yAY ¼ ð0;1Þn, and similarly

veðt; xÞ ¼
Xþ1
i ¼ 0

eivi t; x�
b�

e
t;

x

e

� �
:

Note that the effective drift velocity b� is an unknown constant
vector and its determination is part of the problem.

In the absence of convection and chemical reactions, it is
known that the above two-scale expansion, with b� ¼ 0, gives the
correct upscaled problem (see, e.g. the classical textbooks
Bensoussan et al., 1978; Sanchez-Palencia, 1980). Otherwise the
classical approach (i.e. with b� ¼ 0) leads to a contradiction when

solving the equations at the level of the representative elementary
volume (REV), see below the so-called Fredholm alternative.
Auriault and Adler (1995) avoided this difficulty by introducing an
additional, artificial, time scale. Our novelty is to introduce an
unknown drift velocity b� which eliminates incompatibilities at
the REV level, which is easy to handle in the calculations and
which can be interpreted physically. We notice that the approach
of Carbonell and Whitaker (1983), Paine et al. (1983) and Quintard
and Whitaker (1993) is based on using an ad hoc closure
hypothesis, which we do not need.

Concerning the upscaling of reactive flows through porous
media with small local P�eclet number, the two-scale expansions
were rigorously constructed in the references Hornung et al.
(1994) and Hornung and Jäger (1991). Notice that in this case the
drift velocity is small and it is enough to apply our expansion
with b� ¼ 0.

The idea is to plug this ansatz into Eq. (34). We note the
corresponding chain rule differentiation:

r ue t; x�
b�t

e ;
x

e

� �� �
¼ ðe�1ryþrxÞue t; x�

b�t

e ;
x

e

� �
;

r
2 ue t; x�

b�t

e ;
x

e

� �� �
¼ e�2r

2
yþ

2

e divxryþr
2
x

� �
ue t; x�

b�

e t;
x

e

� �
;

@

@t
ue t; x�

b�t

e
;
x

e

� �� �
¼

@

@t
�

b�

e
rx

� �
ue t; x�

b�t

e
;
x

e

� �
:

After plugging all these expressions into Eqs. (34)–(36) and
equating the coefficients in front of the same powers of e, we get
the following cascade of equations:

Equation of order e�2 :

PelocbðyÞ � ryu0 �r
2
yu0 ¼ 0 in Y0;

�ryu0 � n¼ 0¼ u0 � v0rAD on @S0;

fu0; v0g is Y0�periodic:

8>><
>>: ð37Þ

We deduce

u0ðt; x; yÞ � u0ðt; xÞ and v0ðt; x; yÞ �
u0ðt; xÞ

rAD
: ð38Þ

Equation of order e�1 :

PelocbðyÞ � ryu1 �r
2
yu1

¼ ðb� � PelocbðyÞÞ � rxu0 in Y0;

�ðryu1þrxu0Þ � n¼ �
K�

‘
b� � rxu0

¼Dalocðu1 � v1rADÞ on @S0;

fu1; v1g is Y0�periodic:

8>>>>>>>>><
>>>>>>>>>:

ð39Þ

We deduce

v1 ¼
1

rAD
u1þ

D�K�

k̂
�

‘2
b� � rxu0

� �
ð40Þ

and we search for u1ðt; x; yÞ of the form

u1ðt; x; yÞ ¼
Xn

i ¼ 1

@u0

@xi
ðt; xÞwiðyÞ:

For wi we have a cell problem which reads as follows:

PelocbðyÞ � rywi �r
2
y wi ¼ b�i � PelocbiðyÞ in Y0;

�ðrywiþeiÞ � n¼ �
K�

‘
b�i on @S0;

wi is Y0�periodic:

8>>><
>>>:

ð41Þ

It has the same differential operator as in problems (37) and (39):
a feature of this operator is that it is not invertible. Consequently,
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in order to solve such problems we need an appropriate tool
which is the following Fredholm alternative.

Fredholm alternative for the cell problem: The boundary value
problem

PelocbðyÞ � ryzðyÞ � r
2
yzðyÞ ¼ gðyÞ in Y0;

�ryzðyÞ � n¼ hðyÞ on @S0;

z is Y0�periodic

8>><
>>: ð42Þ

has a unique solution in H1ðY0Þ, up to an additive constant, if and

only if the compatibility conditionZ
Y0

gðyÞdy�

Z
@S0

hðyÞ dS¼ 0 ð43Þ

is satisfied. Applying the Fredholm alternative to (41), i.e.
requiring the compatibility condition (43) to hold true, yields
the value of the drift b�:

b� ¼
Peloc

jY0jþj@S0
jn�1

K�
‘

Z
Y0

bðyÞdy¼ Pelocb; ð44Þ

where jY0j is the relative volume of the fluid part of the unit cell
(the porosity) and j@S0

jn�1 is the dimensionless pore surface area
in the unit cell (the tortuosity). Formula (44) ensures that wi

exists and is unique up to an additive constant. Multiplying (41)
by wi and integrating by parts yields the equalityZ

Y0

jrywij
2 dy¼ Peloc

Z
Y0

ðbi � biÞwi dy

þ

Z
@S0

K�

‘
Pelocbi � ei � n

� �
wi dSy;

from which we deduce that w has at most linear growth in Peloc.

Equation of order e0 :

PelocbðyÞ � ryu2 �r
2
yu2 ¼r

2
x u0 � @tu0

þPelocðb � bðyÞÞrxu1þ2divxryu1 in Y0;

�ðryu2þrxu1Þ � n¼ �Pelocb � rxv1þ
@v0

@t

� �
ĉR

‘cR
¼Dalocðu2 � v2rADÞ on @S0;

fu2; v2g is Y0�periodic:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð45Þ

The compatibility condition for the existence of u2 reads:Z
Y0

ðPelocðb � bðyÞÞ � rxu1þdivxryu1þr
2
x u0 � @tu0Þdy

¼
ĉR

‘cR

Z
@S0

@v0

@t
� Pelocb � rxv1

� �
dSy

¼
K�

‘

Z
@S0

@tu0 � divx Pelocb 	
K�D�

k̂
�

‘2
Pelocbþw

� �
rxu0

	 
� �
dSy:

ð46Þ

Let Kd ¼ jY
0jþK�j@S0

jn�1=‘. After replacing u1 by its previous
value in terms of rxu0 and wi, we deduce from (46) the
homogenized problem (47) and (48).

Kd@tu0 ¼ divxðA
�rxu0Þ in Rn

� ð0; TÞ; ð47Þ

u0ðx;0Þ ¼
jY0ju0ðxÞþ

ĉR

‘cR
j@S0
jn�1v0ðxÞ

jY0jþ
K�

‘
j@S0
jn�1

inRn: ð48Þ

The effective diffusion tensor A� is defined merely by its inner
product with the hessian matrix r2u0, so that only its symmetric
part contributes. It is defined by

A�ij ¼

Z
Y0

@wj

@yi
dyþPe2

loc

K�

‘

K�D�

k̂
�

‘2
j@S0
jn�1bibj

�Peloc

Z
Y0

wjðyÞbiðyÞdyþPelocbi

Z
Y0

wjðyÞdy

þ
K�

‘
Pelocbi

Z
@S0

wjðyÞdSyþjY
0jdij; ð49Þ

which should be symmetrized. This is not the best form for
studying the properties of the dispersion tensor A�. After testing
Eq. (41) for wi, by wj and using Green’s formula and deleting the
antisymmetric contribution, we get the following equivalent
symmetric form of it:

A� ¼ Pe2
loc

K�

‘

K�D�

k̂
�

‘2
j@S0
jn�1b 	 b

þ

Z
Y0

ðIþrywðyÞÞðIþrywðyÞÞT dy: ð50Þ

Obviously the tensor A� is positive definite and problem (47) and
(48) has a unique solution u0. Furthermore A� has at most
quadratic growth in Peloc (see Fannjiang and Papanicolaou, 1994;
Heinze, 2003 for examples and counter-examples of such growth,
depending on the geometry of the flow field bðyÞ). It is clear from
formula (50) that the dispersion tensor A� is usually not isotropic
since b is a privileged direction. This fact is well recognized by
making a difference between the longitudinal and transverse
dispersion.

Remark 2. As suggested by the asymptotic expansion, the
sequence fue; veg of solutions to (34)–(36) satisfies

ueðt; xÞ ¼ u0 t; x�
Pelocb

e t

 !
þru

e ðt; xÞ;

veðt; xÞ ¼
TDE

TA
u0 t; x�

Pelocb

e
t

 !
þrv

e ðt; xÞ; ð51Þ

with functions ru
e and rv

e vanishing as e-0. This convergence
result is proven rigorously in Allaire et al.

Remark 3. Convection is not seen in the homogenized Eq. (48)
because the solution u is defined in moving coordinates when
compared to ue and ve in (51). However, (48) is equivalent to a
convection diffusion equation by a simple change of reference
frame. Indeed, introducing ~ueðt; xÞ ¼ u0ðt; x� ðPelocb=eÞtÞ, it is a
solution of

Kd
@ ~ue

@t
þPeloc

b

e
� r ~ue � div ðA�r ~ueÞ ¼ 0 in Rn

� ð0; TÞ;

~ueð0; xÞ ¼
jY0ju0ðxÞþ

ĉR

‘cR
j@S0jn�1v0ðxÞ

jY0jþ
K�

‘
j@S0jn�1

in Rn:

8>>>>>>><
>>>>>>>:

5. Numerical study of the effective dispersion tensor

We now present some numerical tests in the two-dimensional
case obtained with the FreeFemþþ package by Pironneau et al.
For these simulations, Lagrange P1 finite elements, with a
characteristic Galerkin upwinding, are used and the total number
of vertices (or degrees of freedom) is 34 077 (we checked that our
results are converged under mesh refinement). The solid obstacles
are isolated circular disks. We have the following data for the
parameters (Table 1).
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The velocity bðyÞ is generated by solving the following filtration
problem in the fluid part Y0 of the unit cell Y

ryp�r2
yb¼ ei in Y0;

divy b¼ 0 in Y0;

b¼ 0 on @S0;

p;b are Y0�periodic; s;

8>>>>><
>>>>>:

ð52Þ

where ei is the i th cartesian basis vector.
Data concerning the non-dimensional velocity and the geo-

metry of the unit are the following (Table 2 and Fig. 2).

Next with given non-dimensional velocity b and local P�eclet
number Peloc, we solve the cell problem (41). Its solution is the
vectorial dimensionless concentration w¼ ðw1;w2Þ displayed in
Figs. 3 and 4 (the grey scale goes from smaller values in white to
larger values in black).

The value of the drift is then calculated using formula (44) and
we get

b ¼
0:01808

�6:759� 10�6

� �
ð53Þ

Table 2
Parameter values for the flow.

Parameters Values

Radius of the disk: r 0.2

Porosity: jY0j ¼ 1� r2p 0.874336

Tortuosity: j@S0
j1 ¼ 2rp 1.25664

Kd factor 2.13097

Mean velocity:
R

Y0 bðyÞdy ð0:03853;�1:44� 10�5
Þ

Fig. 2. Fluid velocity in the unit cell.

Fig. 3. Dimensionless concentration w1 for Peloc ¼ 1.

Fig. 4. Dimensionless concentration w2 for Peloc ¼ 1.

Table 1
Parameter values.

Parameters Values

Observation length: LR 10 m

Pore length: ‘ 10�5 m

e¼ ‘=LR 10�6

Characteristic velocity: VR 10�3 m=s

Diffusion coefficient: D� 10�8 m2=s

P�eclet’s number: Pe 106

Adsorption rate k̂
�

10�3 m=s

Adsorption equilibrium constant K� 10�5 m

Damköhler’s number: Da 106

Local P�eclet’s number: Peloc 1

Local Damköhler’s number: Daloc 1
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As already noted, only the symmetric part of the matrix A�

matters for the homogenized problem (47) and (48). It is naturally
decomposed as A� ¼ A1þA2, where

A1 ¼
K�

‘Kd

� �2

j@S0
jn�1

Pe2
loc

Daloc

Z
Y0

bðyÞdy	

Z
Y0

bðyÞdy

and

A2 ¼

Z
Y0

ðIþrywðyÞÞðIþrywðyÞÞT dy:

For Peloc ¼ 1 and Daloc ¼ 1, we get

A1 ¼
4:10� 10�4

�3:43� 10�7

�3:43� 10�7 2:87� 10�11

 !
;

A2 ¼
0:778 �1:49� 10�4

�1:49� 10�4 0:776

 !
and

A� ¼
0:779 �1:50� 10�4

�1:50� 10�4 0:776

 !
: ð54Þ

It is important to have A� as a function of Peloc and Daloc (Fig. 5). It
is shown on figures which follow.

We do not make a direct comparison with the solution of the
full physical problem because its numerical solution is costly, due
to dominant P�eclet and Damköhler numbers. However, we
compare our results to those obtained in the absence of chemical
reactions (i.e. taking K� ¼ 0). For large local P�eclet’s number the
longitudinal dispersion A�11 scales like Pe2

loc with chemical
reactions (see the slope on Fig. 6) while it roughly scales like
Pe1:7

loc without chemical reactions (see the slope on Fig. 7). Our
numerical results in the absence of chemical reactions are in close
agreement with the corresponding ones in the literature, see, e.g.
Salles et al. (1993, Figs. 7 and 8, p. 2359) and Quintard and
Whitaker (1993, Figs. 18 and 20, pp. 2559–2560).

6. Conclusion

In this article we presented a new multiple scale expansion
method, which we named two-scale expansion with drift. It
allowed us to determine the dispersion tensor for a reactive flow
problem with dominant P�eclet and Damköhler’s numbers. We
established that the physical concentration of solute in the fluid is
approximated by ceff ðx; tÞ ¼ cRu0ðt=TD; ðx=LRÞ � ðt=LRKdÞ

R
Y0 v�ðyÞdyÞ

satisfying the problem

Kd
@ceff

@t
þ

1

Kd

Z
Y0

v�ðyÞdy

� �
� rceff

� divðD�A�rceff Þ ¼ 0 inRn
� ð0; TÞ; ð55Þ

ceff jt ¼ 0 ¼

jY0jc0ðxÞþ
1

‘
j@S0jn�1ĉ

0
ðxÞ

jY0jþ
K�

‘
j@S0jn�1

in Rn: ð56Þ

The derived model is much more complex than classical ones used
in practical simulations (see, e.g. Friedly and Rubin, 1992). It is
validated at the mathematical level of rigor in Allaire et al., where
it is proved for any finite time interval ð0; TÞ, we have

Z T

0

Z
Rn

ueðt; xÞ � u0 t; x�
Pelocb

e
t

 !�����
�����
2

dt dx-0; ð57Þ

as e-0. It is difficult to compare our model with those obtained
using volume averaging as in Paine et al. (1983). Indeed the results
of Paine et al. (1983) are valid only for tubes and the models do

Pe_loc

A
*

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5 A*_11
A*_12
A*_22

Fig. 5. Entries A�11, A�12 and A�22 of the dispersion matrix A� as a function of the local

P�eclet’s number, for Daloc ¼ 1.
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Fig. 6. Log–log plot of the (1,1) entry of the dispersion matrix A� ¼ A1þA2, together

with its two components A1 and A2, as a function of the local P�eclet’s number, for

Daloc ¼ 1.
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101

Fig. 7. Log–log plot of the longitudinal dispersion A�11 as a function of the local

P�eclet’s number, in the absence of chemical reactions, K� ¼ 0.
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not correspond. In any case our computed longitudinal dispersion
A�11, in the absence of chemistry, is very similar to those computed
in Salles et al. (1993) and Quintard and Whitaker (1993). However,
there is a strong dependence of our result on the chemistry terms
and it seems to be relatively new in the literature. Of course an
experimental validation of our model should be the topic of future
work but it is out of the scope of the present paper.

Our homogenized model contributes to the understanding of
effective reactive flows with dominant P�eclet’s and Damköhler’s
numbers. We give a relatively simple method of calculating the
dispersion tensor, which can be used not only for the periodic
media but also for random statistically homogeneous porous
media. Expression obtained for the homogenized tensor shows
that the size of dispersion could be very much increased in
function of the characteristic numbers.
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